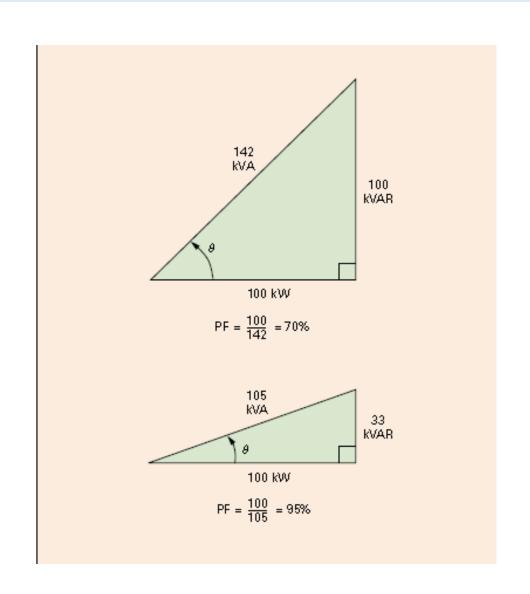

إدارة تحسين معامل القدرة الكهربائية

ورشة عمل المنتدى العربي لمنظمي الكهرباء القاهرة

مهندس / خالد يوسف الصوفي جامعة الملك فهد للبترول والمعادن


معامل القدرة وأهمية تحسينه

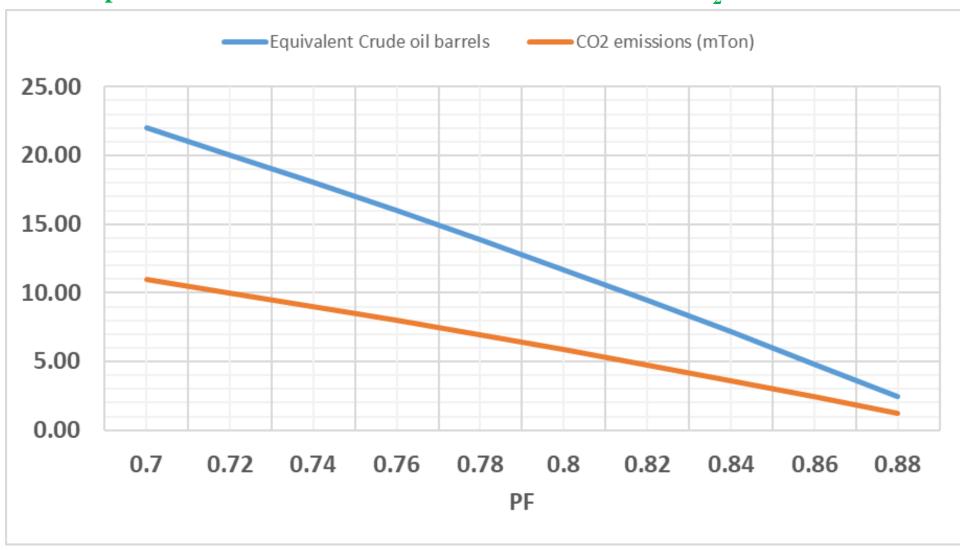
VA = Apparent Power, Q (VAR) = Reactive Power, P (W) = Real Power, Cos α = PF

رفع كفاءة استخدام الطاقة

<u>ن</u>: تحسين كفاءة استخدام الطاقة (kW) برفع معامل القدرة (Power Factor) من ٧٠% الى ٥٠ % عند الاحمال وتخفيض القدرة (kVA) لنفس الطاقة

تجارب وإجراءات متبعة دولياً لرفع كفاءة الاستخدام وتحسين معامل القدرة:

- فرض غرامة على المستهلك بمعامل قدرة تشغيلي منخفض (Pfopr) مقابل معامل القدرة المعين (PFref)، باستخدام معامل مرتبط بفترة استخدام معامل القدرة المنخفض.
 - زيادة تكلفة الطاقة (kWh) على المستهلك استنادا لفرق معامل القدرة،
 - في حالة انخفض معامل القدرة فيتم بعد الإنذار فرض تركيب تجهيزات تحسين معامل القدرة،
- وفي السعودية، لغير الاستهلاك المنزلي، وللأحمال اكبر من واحد MVA ، يطبق غرامة عند نزول معامل القدرة عن ٩٠٠٠ بإضافة ٥ هللة لكلkVARh زيادة، وذلك عندما يتجاوز استهلاك الطاقة غير الفعالة نسبة ٤٨٤% من الطاقة الفعالة.
 - وإجراءات كثيرة مذكورة في الورقة البحثية


"Interactive Power Factor Management with Incentives Toward Reduction in Fuels Consumption and carbon Emission"

International efforts: Summary of Reactive Power Tariff for Utilities of New York State

Utility	Charge	Basis	Billing Determinant	Threshold			Induction
				PF	Demand	Time Period	Generators
Central Hudson Gas & Electric	\$0.83 per kVAR	Peak usage	Highest 15-min. integrated kVA of lagging VAR during the month minus 1/3 of the highest 15-min. integrated kW demand	Less than 95%	Above 500 kW (Threshold reduced from 1,000 kW to 500 kW over 2-yr period.)	Demand exceeds threshold amount in any two of the previous 12 months	Charge applies to generators with total nameplate ≥ 500 kW
Consolidated Edison	Edison\$1.10 per kVAR	Peak usage	Highest integrated kVA of lagging VAR during the month minus 1/3 of the highest integrated kW demand	Less than 95%	Above 500 kW (Threshold reduced from 1,000 kW to 300 kW (in 2012 over 3-yr period.)	Demand exceeds threshold amount in any two of the previous 12 months. As of Oct. 2012, will also apply if demand exceeds 300 kW in any month during previous year ending Sept 30.	Charge applies to generators with total nameplate ≥ 500 kW
New York State Gas & Electric	\$0.00078 per kVARh	Hourly usage	kVARh in excess of 1/4 metered kWh	Less than 97%	Above 200 kW	Demand exceeds threshold amount in any two of the previous 12 month	-
Rochester Gas & Electric	\$0.00127 per kVARh	Hourly usage	kVARh in excess of 1/4 metered kWh	Less than 97%	Above 500 kW (Threshold reduced from 1,000 kW to 300 kW (in 2012) over 3-yr period.)	Demand exceeds threshold amount in any two of the previous 12 month	-
Niagara Mohawk (National Grid)	\$0.85 per kVARh for SC-3 (Large General Service ≥ 100 kW); \$1.02 per kVARh for SC-3A (Large General Service TOU ≥ 2,000 kW)	Peak usage	Highest 15-min. integrated kVA of lagging VAR during the month minus 1/3 of the highest 15-min. integrated kW demand	Less than 95%	Above 500 kW	Demand exceeds threshold amount in any two of the previous 12 month	-
Orange & Rockland	\$0.40 per kVARh	Peak usage	Highest 15-min. integrated kVA of lagging VAR during the month minus 1/3 of the highest 15-min. integrated kW demand	Less than 95%	Above 500 kW (Threshold reduced from 1,000 kW to 500 kW over 2-yr period.)	Demand exceeds threshold amount in any two of the previous 12 month	Charge applies to generators with total nameplate ≥ 500 kW

رفع معامل القدرة وكفاءة الاستخدام يقلل الانبعاثات الكربونية

PF improvement up to 0.9 for 1 GWh load and crude oil barrels and CO₂ emissions in metric Tons reduction

حسابات تأثير تحسين معامل القدرة على استهلالك الوقود وإنتاج الكربون

Energy Sales (GWH)-2020, non-houshold consumptions	8,988.6
Curde oil Price per Barrel (\$)	100.0
Mton CO2 Price (Carpon credit) (\$)	20.0
Ohmic Losses % of Total T&D Losses*	60.00
Reference Power Factor (PFref)	0.88
Operational Power Factor (PF)	0.90
Variation % in (T&D Ohmic loss, BTU, CO2)**	4.4
Δ Ohmic Losses (GWH /year) in T&D	701.1
Δ Losses (GWH /year) in T&D	30.8
Δ MBTU/year	316,013.4
Δ # of Equivalent Crude oil (barrels/year)	54,485.1
Δ Mton (CO2/year)***	23,428.6
Δ Curde oil (\$/year)	5,448,507.1
Δ Mton CO2 (\$/year)	468,571.6
Δ Total in (\$/year)	5,917,078.7

^{* %} assumed as of Total T&D losses (13%) with Sold Energy (2018/19)

0.97 t CO2 eq /MWh for oil-fired plants

0.97 Mton co2 / Gwh (source: IFA)

^{** %} valid for all results

^{***} CO2 emissions of crude oil Generation:

طرح نموذج للمساهمة في رفع معامل القدرة بشكل تشاركي (win & win)

• مع زيادة استخدام أجهزة قياس وحساب الطاقة الكهربائية الذكية أصبحت بالإمكان التوسع في نظام القياسات ونماذجها

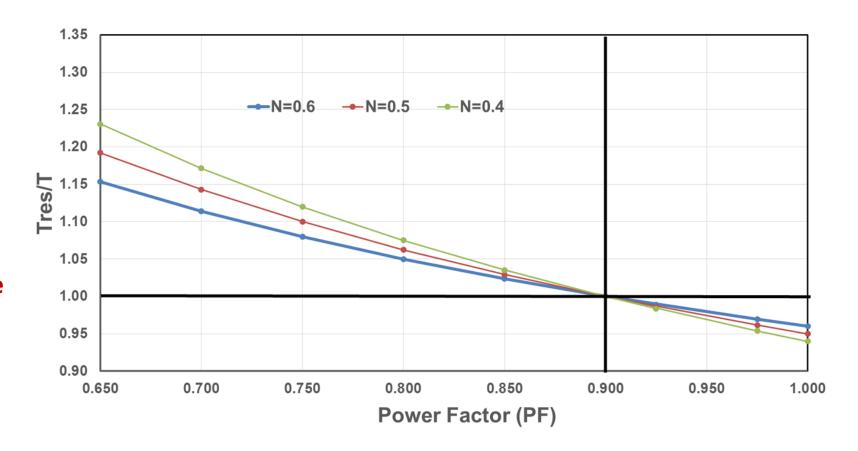
• بالاستناد الى الورقة العلمية، التي قدمت نموذجا حسابيا للربط بين معامل الطاقة والتعرفة:

" *A Nonzero Sum Approach to Interactive Electricity Consumption*, Zedan, F. M., A.M. Al-Shehri, S.Z. Zakhary, M.H. Al-Anazi, A.S. Al-Mozan, and Z.R. Al-Zaid, (2010), IEEE Transactions on Power Delivery, vol 25, No. 1, January 2010

$$\frac{T_{res}}{T} = \left\{ N + (1 - N) * \left(\frac{PF_{ref}}{PF}\right) \right\}$$

$$\frac{T_{res}}{T} = \left\{ N + (1 - N) * \left(\frac{PF_{ref}}{PF}\right) \right\}$$

التعرفة الناتجة: Tres


T: التعرفة المحددة من المنظم,

N: عامل متغیر $0 \le N \le 1$,

عامل القدرة المحدد من المنظم:

عامل القدرة التشغيلي لدى المستهاك: PF:

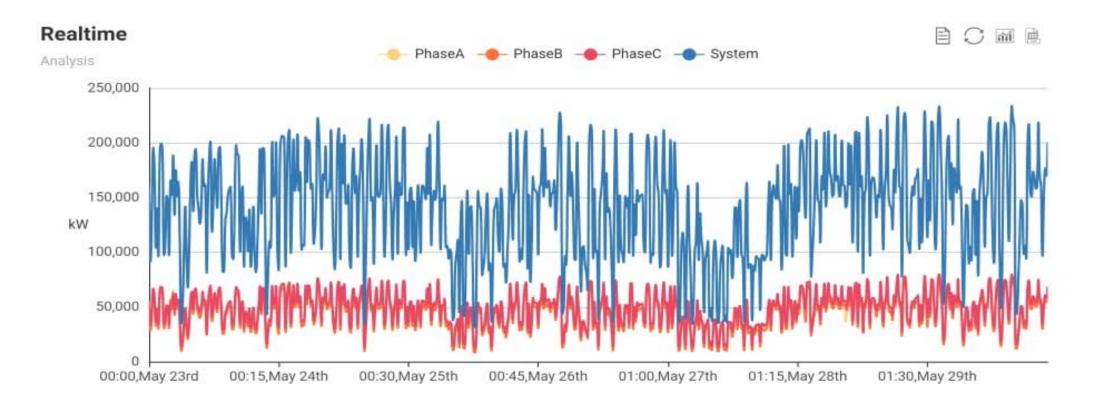
As N increase then $\frac{T_{res}}{T}$ decrease

دراسات لتطبيق النموذج

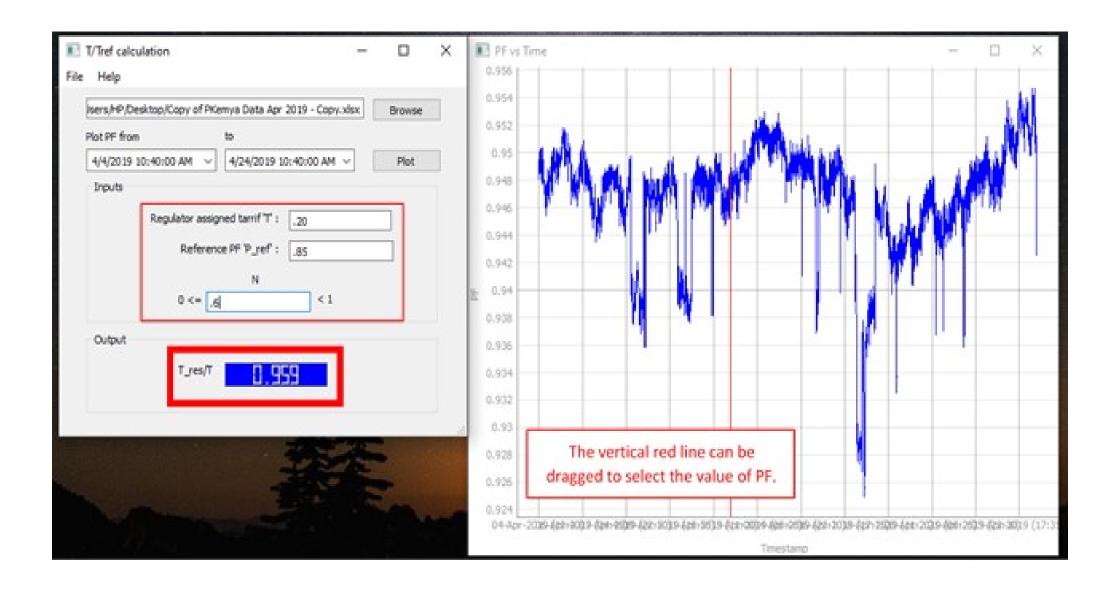
تم انجاز دراسة ميدانية لمدة ١٤ شهر لجمع البيانات واجراء المقارنات لبحث إمكانية تطبيق النموذج كما يلى:

✓ اجراء القياسات على احمال صناعية كبرى (300 MW) في المرحلة الأولى

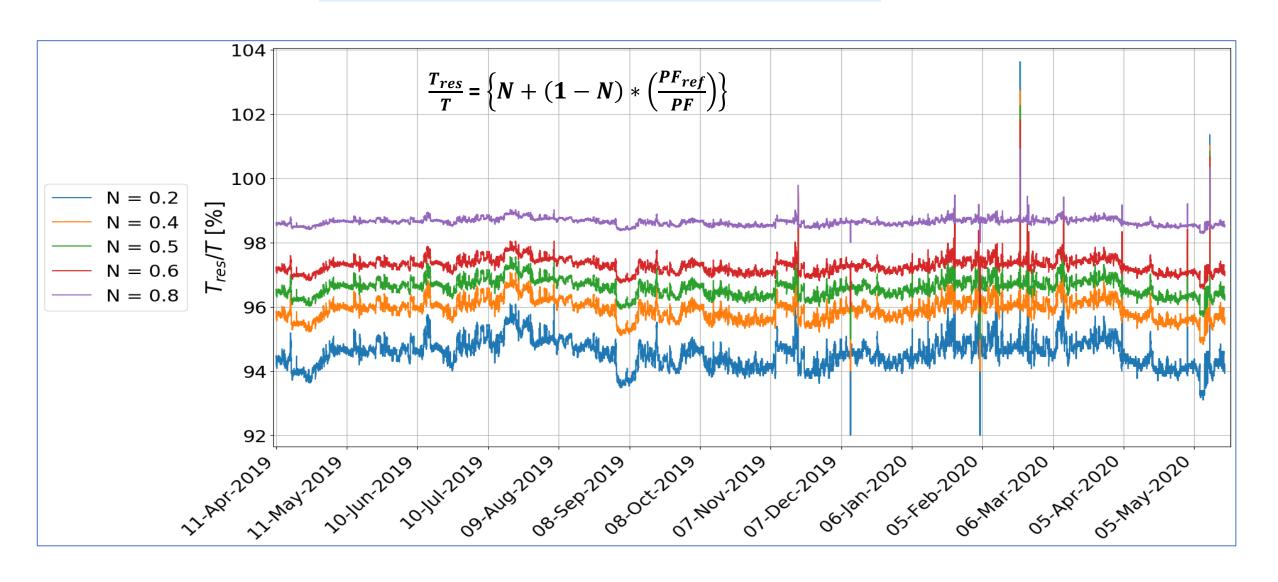
✓ استخدام أنظمة قياس ذكية متقدمة لرصد: V, I, P, Q, PF, E

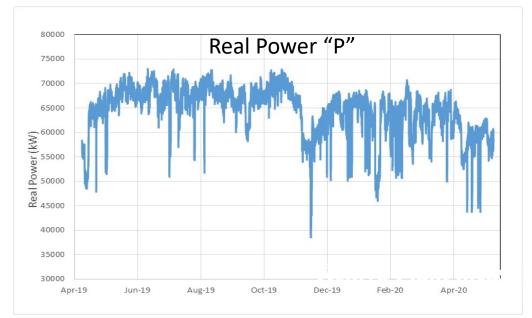

√ تجميع البيانات خلال فترات صغيرة متعددة (٥ دقائق وأيضا اقل لدقيقة) وبنظام قياس دقة عالية

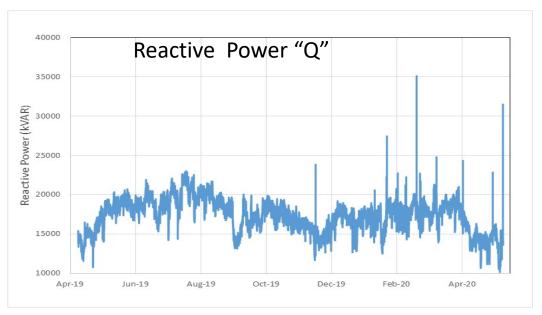
√ الاحمال الكهربائية تتغير خلال فترات القياس ويتم تحديد قيم الانخفاض والارتفاع بشكل محدد واضح

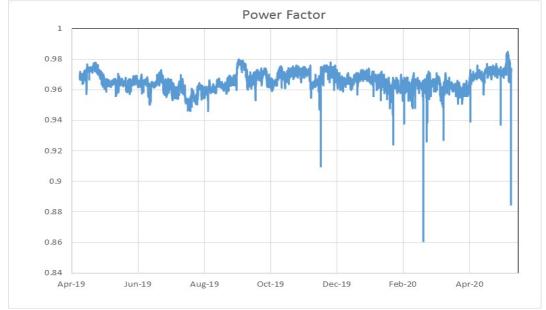

✓ تطوير نظم تحليل للبيانات

نماذج قیاسات

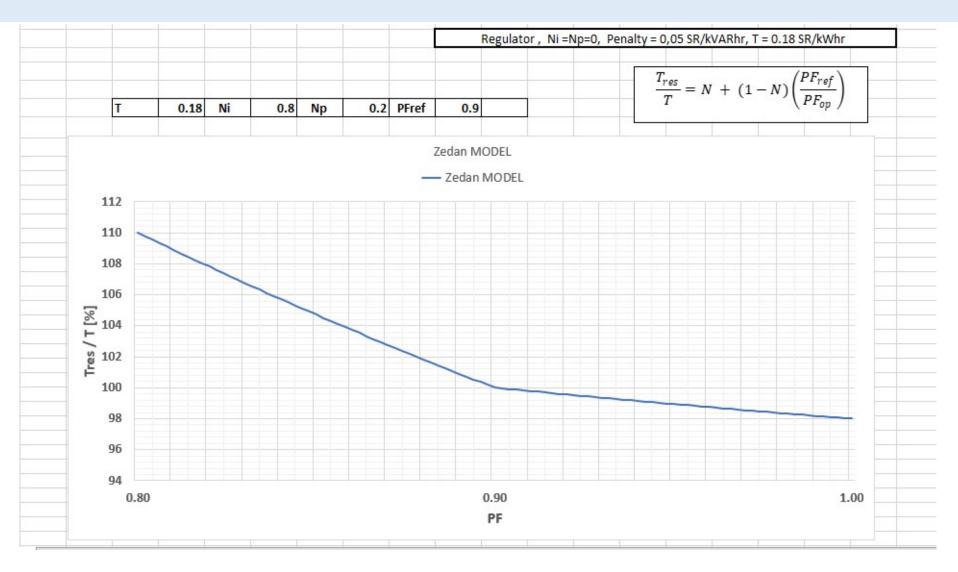




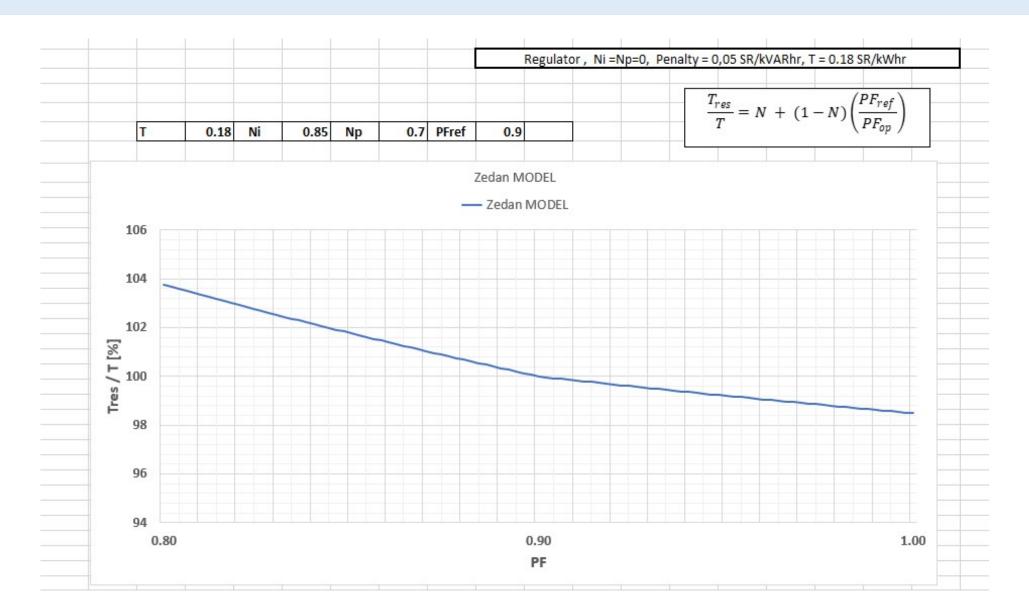

تطوير برامج رياضية لتحليل البيانات



تحليل البيانات وتحديد تأثير المتغير N


دراسة وتطبيق النموذج المقترح

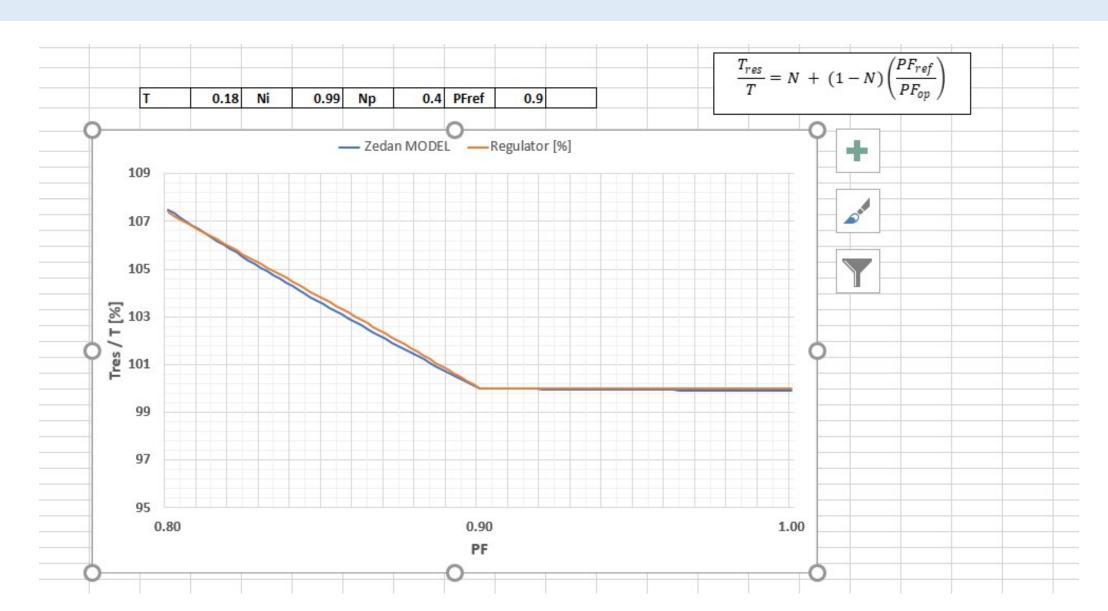
• العمل على تحديد المعامل " N" في النموذج.


• ≥N ≤ 1

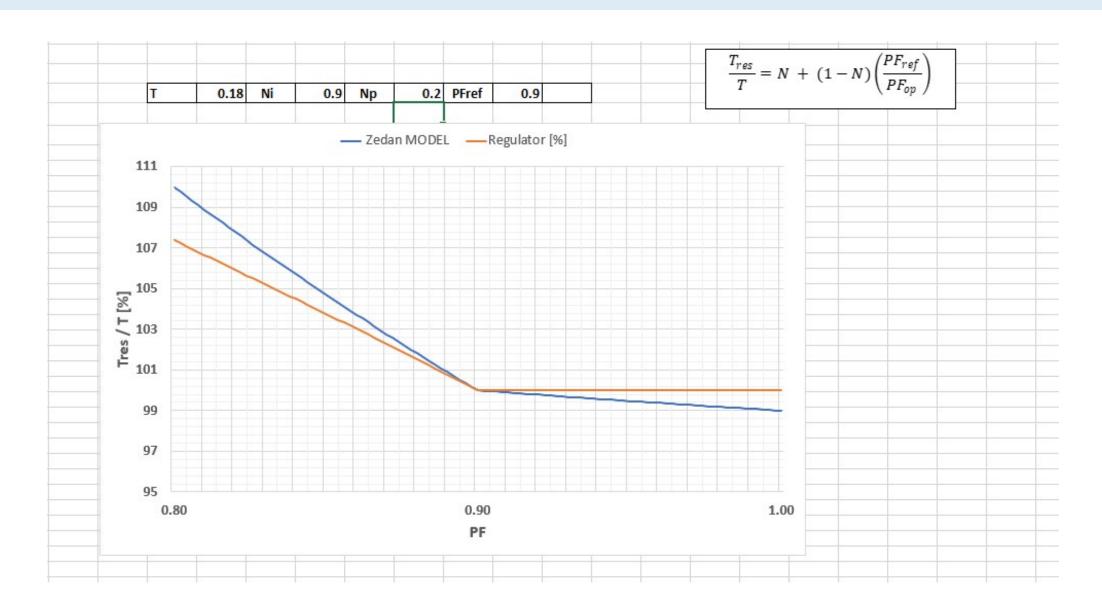
- المعامل (N) أداة تمكن منظم الكهرباء من تحديد سقوف عليا وسفلى لضبط التعرفة.
- يمكن استخدام معامل (N) بقيمتين مختلفتين: (Np): لجهة تطبيق غرامات و (Ni) لجهة التحفيز. حيث يمكن أن تكون Np = ١٠,٠ و Ni = ١٥٤,٠ . حيث ستصبح التعرفة اكبر في حالة الغرامات مع انخفاض معامل القدرة للدفع باتجاه تحسين معامل القدرة، وأيضا تعرفة منخفضة للتحفيز لمن يرفع معامل القدرة ويحسن كفاءة الاستخدام.

Ni = 0.8 و p = 0.2 و p = 0.2 و p = 0.2 و p = 0.2 و p = 0.8

Ni = 0.85 و Np = 0.7 و اختیار معامل p = 0.7 و Ni = 0.85



مقارنة بين نموذجين


•
$$T_{res}$$
 (Zedan)
$$= \begin{cases}
0.18 \left[0.16 + (1 - 0.16) \frac{0.9}{PF} \right] SR/KWh: PF < 0.9, \mathbf{Np} = \mathbf{0}. \mathbf{16} \\
0.18 \left[0.654 + (1 - 0.654) \frac{0.9}{PF} \right] SR/KWh: PF \ge 0.9, Ni = \mathbf{0}. \mathbf{654}
\end{cases}$$

$$= \begin{cases} 0.18 + 0.05 & (\tan(\cos^{-1}PF) - \tan(\cos^{-1}0.9)) \frac{SR}{KWh} & for PF < 0.9 \\ 0.18 & \frac{SR}{KWh} & for PF \ge 0.9 \end{cases}$$

مقارنة للنموذجين وتأثير اختيار معامل Np=0.4 و Ni = 0.99

Ni = 0.9 و Np = 0.2 و p = 0.2 و Ni = 0.9 و Ni = 0.9

نتائج وتوصيات

- قدم النموذج المطروح (د. زيدان) علاقة بين التعرفة الكهربائية ومعامل القدرة المحدد والتشغيلي ووضع معامل خاص (N) لتحديد الخيرات الممكنة
- اظهر النموذج وسيلة لتحسين التعاون بين المستهلكين و مؤمني الخدمة الكهربائية لتحقيق المنافع المتبادلة وتحسين معامل القدرة، والمساهمة في رفع كفاءة الاستخدام للطاقة
 - تحديد معامل (N) يسهل اعتماد السياسات الممكنة لمنظم الكهرباء لاستخدام النموذج
- يطرح النموذج المقترح المجال لتقديم حافز لتحسين معامل القدرة وأيضا تطبيق عقوبة متغيرة للدفع باتجاه تحسين معامل القدرة وكفاءة الاستهلاك
- يمكن تطبيق النموذج باستخدام أجهزة القياس الحديثة الذكية وبرمجة النموذج وتحديد فترات القياس للتعامل مع التغيرات في الاستهلاك الكهربائي
- سيتم تحسين فرص تطبيق النموذج المقترح من خلال إجراء دراسات ميدانية تساعد على التأكد من فرص النجاح

دراسات الطاقة المفقودة من خلال نموذج حسابات الفقد الكهربائي

Loss Excel sheet.xlsx

Q & A

• REGARDS & THANKS